Brouwer's conjecture
= Brouwer's conjecture
{wiki=Brouwer's_conjecture}
Brouwer's conjecture, proposed by the Dutch mathematician L.E.J. Brouwer in the early 20th century, is a statement in the field of topology, particularly concerning the nature of continuous functions and fixed points. Specifically, the conjecture asserts that every continuous function from a compact convex set to itself has at least one fixed point.