= Lorentzian manifolds
{wiki=Lorentzian_manifolds}
A Lorentzian manifold is a type of differentiable manifold equipped with a Lorentzian metric. This structure is foundational in the theory of general relativity, as it generalizes the concepts of time and space into a unified framework. Here are the key features of a Lorentzian manifold: 1. **Differentiable Manifold**: A Lorentzian manifold is a differentiable manifold, which means it is a topological space that locally resembles Euclidean space and allows for differential calculus.
Back to article page