Source: wikibot/operator-algebra

= Operator algebra
{wiki=Operator_algebra}

Operator algebra is a branch of mathematics that deals with the study of operators, particularly in the context of functional analysis and quantum mechanics. It focuses on the algebraic structures that arise from collections of bounded or unbounded linear operators acting on a Hilbert space or a Banach space. Key concepts in operator algebra include: 1. **Operators:** These are mathematical entities that act on elements of a vector space. In quantum mechanics, operators represent observable quantities (like position, momentum, and energy).