In plain English: the space has no visible holes. If you start walking less and less on each step, you always converge to something that also falls in the space.
One notable example where completeness matters: Lebesgue integral of is complete but Riemann isn't.
Advantages over Riemann:
- Lebesgue integral of is complete but Riemann isn't.
- youtu.be/PGPZ0P1PJfw?t=710 you are able to switch the order of integrals and limits of function sequences on non-uniform convergence. TODO why do we care? This is linked to the Fourier series of course, but concrete example?
Integrable functions to the power , usually and in this text assumed under the Lebesgue integral because: Lebesgue integral of is complete but Riemann isn't