Timeline:He went pretty much in a straight line into the quantum computing boom! Well done.
- 2015: joined Google as a Google Quantum AI employee
- 2010: UCSB Physics PhD. His thesis was "Fault-tolerant superconducting qubits" and the PDF can be downloaded from: alexandria.ucsb.edu/lib/ark:/48907/f3b56gwb.
- 2006: UCSB Physics undergrad. In 2008 he joined John Martinis' lab during his undergrad itself.
Superconducting qubits are good because superconductivity is macroscopic Updated 2025-01-10 +Created 1970-01-01
Superconducting qubits are regarded as promising because superconductivity is a macroscopic quantum phenomena of Bose Einstein condensation, and so as a macroscopic phenomena, it is easier to control and observe.
This is mentioned e.g. in this relatively early: physicsworld.com/a/superconducting-quantum-bits/. While most quantum phenomena is observed at the atomic scale, superconducting qubits are micrometer scale, which is huge!
Physicists are comfortable with the use of quantum mechanics to describe atomic and subatomic particles. However, in recent years we have discovered that micron-sized objects that have been produced using standard semiconductor-fabrication techniques – objects that are small on everyday scales but large compared with atoms – can also behave as quantum particles.