Ah, the jewel of computational physics.
Also known as an ab initio method: no experimental measurement is taken as input, QED is all you need.
But since QED is thought to fully describe all relevant aspects molecules, it could be called "the" ab initio method.
For one, if we were able to predict protein molecule interactions, our understanding of molecular biology technologies would be solved.
No more ultra expensive and complicated X-ray crystallography or cryogenic electron microscopy.
And the fact that quantum computers are one of the most promising advances to this field, is also very very exciting: Section "Quantum algorithm".
- www.youtube.com/watch?v=NtnsHtYYKf0 "Mercury and Relativity - Periodic Table of Videos" by a
Articles by others on the same topic
Quantum chemistry is a branch of chemistry that applies the principles of quantum mechanics to study the behavior of atoms and molecules. It seeks to understand how quantum effects influence chemical properties and reactions. Here are some key aspects of quantum chemistry: 1. **Wave-Particle Duality**: Quantum chemistry leverages the concept that particles, such as electrons, exhibit both wave-like and particle-like properties, which is fundamental in explaining their behavior in atomic and molecular systems.