Output:
With our understanding of the discrete Fourier transform we see clearly that:
sin(t)
fft
real 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
imag 0 -10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
rfft
real 0 0 0 0 0 0 0 0 0 0 0
imag 0 -10 0 0 0 0 0 0 0 0 0
sin(t) + sin(4t)
fft
real 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
imag 0 -10 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 10 0 0 10
rfft
real 0 0 0 0 0 0 0 0 0 0 0
imag 0 -10 0 0 -10 0 0 0 0 0 0
- the signal is being decomposed into sinusoidal components
- because we are doing the Discrete Fourier transform of a real signal, for the
fft
, so there is redundancy in the. We also understand thatrfft
simply cuts off and only keeps half of the coefficients