Affine curvature is a concept from differential geometry, particularly in the study of affine differential geometry, which focuses on the properties of curves and surfaces that are invariant under affine transformations (linear transformations that preserve points, straight lines, and planes). In more detail, affine curvature pertains to the curvature of an affine connection, which is a way to define parallel transport and consequently, the notion of curvature in a space that doesn't necessarily have a metric (length) structure like Riemannian geometry.
New to topics? Read the docs here!