Connection (principal bundle)

ID: connection-principal-bundle

In the context of differential geometry and algebraic topology, a **connection** on a principal bundle is a mathematical structure that allows one to define and work with notions of parallel transport and differentiability on the bundle. A principal bundle is a mathematical object that consists of a total space \( P \), a base space \( M \), and a group \( G \) (the structure group) acting freely and transitively on the fibers of the bundle.

New to topics? Read the docs here!