The Dirichlet L-function is a complex function that generalizes the Riemann zeta function and plays a crucial role in number theory, particularly in the study of Dirichlet characters and L-series. It is associated with a Dirichlet character \( \chi \) modulo \( k \), which is a completely multiplicative arithmetic function satisfying certain periodicity and the condition \( \chi(n) = 0 \) for \( n \) not coprime to \( k \).
New to topics? Read the docs here!