Fields of abstract algebra

ID: fields-of-abstract-algebra

Fields are a fundamental concept in abstract algebra, a branch of mathematics that studies algebraic structures. A field is a set equipped with two operations: addition and multiplication, satisfying certain properties. Here are the key properties that define a field: 1. **Closure**: For any two elements \(a\) and \(b\) in the field, both \(a + b\) and \(a \cdot b\) are also in the field.

New to topics? Read the docs here!