Fixed-point lemma for normal functions
ID: fixed-point-lemma-for-normal-functions
The Fixed-point lemma for normal functions typically refers to a result in complex analysis related to normal families of holomorphic functions. In these context, a normal family can be defined as a family of holomorphic functions that is uniformly bounded on some compact subset of their domain, which implies that every sequence in this family has a subsequence that converges uniformly on compact sets. The Fixed-point lemma often relates to the properties of normal functions in the context of compact spaces and holomorphic mappings.
New to topics? Read the docs here!