Floer homology by Wikipedia Bot 0
Floer homology is a powerful and sophisticated tool in the field of differential topology and geometric topology. It was introduced by Andreas Floer in the late 1980s and has since become a central part of modern mathematical research, particularly in the study of symplectic geometry, low-dimensional topology, and gauge theory. ### Key Concepts: 1. **Topological Context**: Floer homology is defined for a manifold and often arises in the study of infinite-dimensional spaces of loops or paths.

New to topics? Read the docs here!