The Gromov boundary is a concept in geometric topology, particularly in the study of metric spaces, especially those that are geodesic and hyperbolic. It is used to analyze the asymptotic behavior of spaces and to understand their large-scale geometry. More formally, the Gromov boundary can be defined for a proper geodesic metric space. A metric space is considered proper if every closed ball in the space is compact.
New to topics? Read the docs here!