Integer factorization algorithms better than Shor's algorithm
New to topics? Read the documentation here!
Integer factorization algorithms better than Shor's algorithm by Ciro Santilli 34 Updated 2024-12-15 +Created 1970-01-01
- 2023 www.schneier.com/blog/archives/2023/01/breaking-rsa-with-a-quantum-computer.html comments on "Factoring integers with sublinear resources on a superconducting quantum processor” arxiv.org/pdf/2212.12372.pdf
A group of Chinese researchers have just published a paper claiming that they can—although they have not yet done so—break 2048-bit RSA. This is something to take seriously. It might not be correct, but it’s not obviously wrong.We have long known from Shor’s algorithm that factoring with a quantum computer is easy. But it takes a big quantum computer, on the orders of millions of qbits, to factor anything resembling the key sizes we use today. What the researchers have done is combine classical lattice reduction factoring techniques with a quantum approximate optimization algorithm. This means that they only need a quantum computer with 372 qbits, which is well within what’s possible today. (The IBM Osprey is a 433-qbit quantum computer, for example. Others are on their way as well.)