Johnson–Lindenstrauss lemma

ID: johnson-lindenstrauss-lemma

The Johnson–Lindenstrauss (JL) lemma is a result in mathematics and computer science that states that a set of high-dimensional points can be embedded into a lower-dimensional space in such a way that the distances between the points are approximately preserved. More formally, the lemma asserts that for any set of points in a high-dimensional Euclidean space, there exists a mapping to a lower-dimensional Euclidean space that maintains the pairwise distances between points within a small factor.

New to topics? Read the docs here!