In computational geometry, a **K-set** refers to a specific type of geometric object that arises in the context of point sets in Euclidean space. When we have a finite set of points in a plane (or higher dimensional spaces), the K-set can be thought of as the set of all points that can be defined as the vertices of convex polygons (or polyhedra in higher dimensions) formed by selecting subsets of these points.
New to topics? Read the docs here!