A **Moufang loop** is a structure in the field of algebra, specifically in the study of non-associative algebraic systems. A Moufang loop is defined as a set \( L \) equipped with a binary operation (often denoted by juxtaposition) that satisfies the following Moufang identities: 1. \( x(yz) = (xy)z \) 2. \( (xy)z = x(yz) \) 3.
New to topics? Read the docs here!