Nilradical of a ring

ID: nilradical-of-a-ring

The nilradical of a ring is an important concept in ring theory, a branch of abstract algebra. Specifically, the nilradical of a ring \( R \) is defined as the set of all nilpotent elements in \( R \). An element \( x \) of \( R \) is called nilpotent if there exists some positive integer \( n \) such that \( x^n = 0 \).

New to topics? Read the docs here!