Principal ideal domain
ID: principal-ideal-domain
A **Principal Ideal Domain (PID)** is a special type of integral domain in the field of abstract algebra. Here are some key characteristics of a PID: 1. **Integral Domain**: A PID is an integral domain, which means it is a commutative ring with no zero divisors and has a multiplicative identity (usually denoted as 1). 2. **Principal Ideals**: In a PID, every ideal is a principal ideal.
New to topics? Read the docs here!