Stably free module

ID: stably-free-module

In the context of algebra, a **stably free module** is a type of module that behaves similarly to free modules under certain conditions. More formally, a module \( M \) over a ring \( R \) is said to be **stably free** if there exists a non-negative integer \( n \) such that \( M \oplus R^n \) is a free module. In this definition: - \( M \) is the module in question.

New to topics? Read the docs here!