Vapnik–Chervonenkis theory
ID: vapnik-chervonenkis-theory
Vapnik–Chervonenkis (VC) theory is a fundamental framework in statistical learning theory developed by Vladimir Vapnik and Alexey Chervonenkis in the 1970s. The theory provides insights into the relationship between the complexity of a statistical model, the training set size, and the model's ability to generalize to unseen data.
New to topics? Read the docs here!