Generalization of AlphaGo Zero that plays Go, Chess and shogi.
- www.science.org/doi/10.1126/science.aar6404 A general reinforcement learning algorithm that masters Chess, Shogi, and Go through self-play by Silver et al. (2018), published without source code
- www.quora.com/Is-there-an-Open-Source-version-of-AlphaZero-specifically-the-generic-game-learning-tool-distinct-from-AlphaGo
www.quora.com/Which-chess-engine-would-be-stronger-Alpha-Zero-or-Stockfish-12/answer/Felix-Zaslavskiy explains that it beat Stockfish 8. But then Stockfish was developed further and would start to beat it. We know this because although AlphaZero was closed source, they released the trained artificial neural network, so it was possible to replay AlphaZero at its particular stage of training.
This section is about games initially designed for humans, but which ended up being used in AI development as well, e.g.:
- board games such as Chess and Go
- video games such as Minecraft or old Video game console games
mlcommons.org/en/ Their homepage is not amazingly organized, but it does the job.
Benchmark focused on deep learning. It has two parts:Furthermore, a specific network model is specified for each benchmark in the closed category: so it goes beyond just specifying the dataset.
Results can be seen e.g. at:
- training: mlcommons.org/en/training-normal-21/
- inference: mlcommons.org/en/inference-datacenter-21/
And there are also separate repositories for each:
E.g. on mlcommons.org/en/training-normal-21/ we can see what the the benchmarks are:
Dataset | Model |
---|---|
ImageNet | ResNet |
KiTS19 | 3D U-Net |
OpenImages | RetinaNet |
COCO dataset | Mask R-CNN |
LibriSpeech | RNN-T |
Wikipedia | BERT |
1TB Clickthrough | DLRM |
Go | MiniGo |