Birch and Swinnerton-Dyer conjecture in two minutes by Ciro Santilli Updated 2024-12-15 +Created 1970-01-01
Summary:
- overview of the formula of the BSD conjecture
- definition of elliptic curve
- domain of an elliptic curve. Prerequisite: field
- elliptic curve group. Prerequisite: group
- Mordell's theorem lets us define the rank of an elliptic curve over the rational numbers, which is the . Prerequisite: generating set of a group
- reduction of an elliptic curve from to lets us define as the number of elements of the generated finite group
How to build it: math.stackexchange.com/questions/3137319/how-in-general-does-one-construct-a-cycle-graph-for-a-group/3162746#3162746 good answer with ASCII art. You basically just pick each element, and repeatedly apply it, and remove any path that has a longer version.
Immediately gives the generating set of a group by looking at elements adjacent to the origin, and more generally the order of each element.
TODO uniqueness: can two different groups have the same cycle graph? It does not seem to tell us how every element interact with every other element, only with itself. This is in contrast with the Cayley graph, which more accurately describes group structure (but does not give the order of elements as directly), so feels like it won't be unique.
A Cartesian product that carries over some extra structure of the input groups.
E.g. the direct product of groups carries over group structure on both sides.
The set of all invertible matrices forms a group: the general linear group with matrix multiplication. Non-invertible matrices don't form a group due to the lack of inverse.
Group of all permutations.