Computer science course of the University of Oxford Updated +Created
Course lists: www.cs.ox.ac.uk/teaching/courses/ True to form, courses appear to have identifiers, e.g. qi for the Quantum Information course of the University of Oxford rather than more arbitrary A1/A2/A3, B1/B2/B3, naming convention used by the Mathematics course of the University of Oxford and the Physics course of the University of Oxford, and URLs can either have years or not:
The "course materials" section of each course leads to courses.cs.ox.ac.uk/ which is paywalled by IP (accessible via Eduroam): TODO which system does it use? Some courses place their materials directly on "www.cs.ox.ac.uk", and when that is the case they are publicly accessible. So it is very much hit and miss. E.g. www.cs.ox.ac.uk/teaching/courses/2022-2023/quantum/index.html from Quantum Processes and Computation course of the University of Oxford has the assignments such as www.cs.ox.ac.uk/people/aleks.kissinger/courses/qpc2022/assignment1.pdf publicly visible, but e.g. www.cs.ox.ac.uk/teaching/courses/2022-2023/modelsofcomputation/ has nothing.
Handbook:
Physics course of the University of Oxford Updated +Created
From the 2020/2021 Oxford physics course handbooks we can determine the following structure:
  • Year 1 (CP, "Coure Preliminaries", "Prelims"). Take all of:
    • CP1 Classical mechanics, Special relativity
    • CP2 Electromagnetism, circuit theory and optics
    • CP3 Mathematical methods 1. Complex Numbers and Ordinary Differential Equations. Vectors and Matrices.
    • CP4 Mathematical methods 2. Multiple Integrals and Vector Calculus. Normal Modes, Wave Motion and the Wave Equation.
  • Year 2 (Part A). Take all of:
    • A1 Thermal physics. Kinetic Theory, Heat Transport, Thermodynamics.
    • A2 Electromagnetism and optics
    • A3 Quantum physics. Quantum Mechanics and Further Quantum Mechanics.
    • Short options: at least one of:
      • Mathematical Methods
      • Probability and Statistics
      • S01 Functions of a Complex Variable
      • S07 Classical Mechanics
      • S10 Medical Imaging and Radiation Therapy
      • S13 Teaching and Learning Physics in Schools
      • S14 History of Physics
      • S20 History of Science
      • S21 Philosophy of Science
      • S22 Language Options
      • S25 Climate Physics
      • S27 Philosophy of Space-Time
      • S29 Exploring Solar Systems
      • S33 Entrepreneurship for Physicists
  • Year 3 (Part B). Take all of:
  • Year 4 (MPhys). Select two from:
Trinity term, the third and final term of each year, contains mostly revision from the previous two terms, after which students take their final exams, which basically account for their entire grade. Trinity is therefore a very tense part of the year for the students. After that they have summer holidays, until coming back for the next year of madness.
The official external course landing page: www.ox.ac.uk/admissions/undergraduate/courses/course-listing/physics. 2021 archive: web.archive.org/web/20221208212856/https://www.ox.ac.uk/admissions/undergraduate/courses/course-listing/physics) In those pages we see the rough structure, except that it does not have the course codes "A1" etc., and some courses are missing.
At web.archive.org/web/20221229021312/https://www2.physics.ox.ac.uk/sites/default/files/2011-06-03/course_v3_pdf_80151.pdf page 11 we can see the global course structure giving the two options, 3 year BA or 4 year Oxford physics masters:
Year 1
(Prelims)
|
|
v
Year 2
(Part A)
|
+-----------+
|           |
v           v
Year 3 BA   Year 3 (MPhys)
(Part B)    (Part B)
|           |
|           |
v           v
BA          Year 4
            (Part C)
            |
            |
            v
            MPhys
Practical courses notes: www-teaching.physics.ox.ac.uk/
Quantum Information course of the University of Oxford Hilary 2023 Updated +Created
This section is about the version of the course offerece on Hilary term 2023 (January).
Quantum matter physics course of the University of Oxford Updated +Created
Notes/book: www-thphys.physics.ox.ac.uk/people/SteveSimon/QCM2022/QuantumMatter.pdf Marked as being for Oxford MMathPhys, so it appears that this is a 4th year course normally. TODO but where is it listed under the course list of MMapthPhys? mmathphys.physics.ox.ac.uk/course-schedule
  • Fermi Liquids
    • Weakly Interacting Fermions
    • Response Functions and Screening
      • Thomas Fermi
      • RPA
      • Plasmons
    • Landau Fermi Liquid Theory
  • Superfluidity
    • Two Fluid Model and Quantized Circulation
    • Landau Criterion for Superfluidity
    • Two Fluid Model for Superconductors
      • London Theory
      • Flux Vortices
      • Type I and Type II superconductors
    • Microscopic Superfluidity
      • Coherent States
      • Bose Condensation
      • Gross Pitaevskii Equation
      • Off Diagonal Long Range Order
      • Feynman Theory of Superfluidity (in book, but will skip in lectures. Not examinable)
    • Ginzburg Landau Theory of Superfluids
      • Neutral Superfluids
      • Charged Superfluids
      • Anderson - Higgs Mechanism
      • Rederviation of London Equations
      • Ginzburg - Landau Parameter and Type I/II revisited
      • Vortex Structure
  • BCS Theory of Superconductors
    • Phonons
    • The Cooper Problem
    • BCS wavefunction
    • Bogoliubov Excitation Spectrum
    • Majorana Physics
Term of the University of Oxford Updated +Created
Each term has 8 weeks, and the week number is often used to denote the time at which something happens.
Week 0 is also often used to denote the week before classes officially start. This is especially important in the first term of the year (Michaelmas term) where people are coming back to school and meeting old and new friends.
At the end of the year, after Trinity term, students have exams. These basically account for all of the grades. In certain courses such as the Physics course of the University of Oxford, there is only new material on Michaelmas term and Hilary term, Trinity term being revision-only. So you can imagine that during Trinity term, students are going to be on edge.
Bibliography: