Analytic continuation Updated +Created
visualizing the Riemann hypothesis and analytic continuation by 3Blue1Brown (2016) is a good quick visual non-mathematical introduction is to it.
The key question is: how can this continuation be unique since we are defining the function outside of its original domain?
The answer is: due to the identity theorem.
Holomorphic function Updated +Created
Being a complex holomorphic function is an extremely strong condition.
The existence of the first derivative implies the existence of all derivatives.
Another extremely strong consequence is the identity theorem.
"Holos" means "entire" in Greek, so maybe this is a reference to the fact that due to the identity theorem, knowing the function on a small open ball implies knowing the function everywhere.