Given a matrix with metric signature containing positive and negative entries, the indefinite orthogonal group is the set of all matrices that preserve the associated bilinear form, i.e.:Note that if , we just have the standard dot product, and that subcase corresponds to the following definition of the orthogonal group: Section "The orthogonal group is the group of all matrices that preserve the dot product".
As shown at all indefinite orthogonal groups of matrices of equal metric signature are isomorphic, due to the Sylvester's law of inertia, only the metric signature of matters. E.g., if we take two different matrices with the same metric signature such as:and:both produce isomorphic spaces. So it is customary to just always pick the matrix with only +1 and -1 as entries.
The main interest of this theorem is in classifying the indefinite orthogonal groups, which in turn is fundamental because the Lorentz group is an indefinite orthogonal groups, see: all indefinite orthogonal groups of matrices of equal metric signature are isomorphic.
It also tells us that a change of basis does not the alter the metric signature of a bilinear form, see matrix congruence can be seen as the change of basis of a bilinear form.
The theorem states that the number of 0, 1 and -1 in the metric signature is the same for two symmetric matrices that are congruent matrices.
For example, consider:
The eigenvalues of are and , and the associated eigenvectors are:symPy code:and from the eigendecomposition of a real symmetric matrix we know that:
A = Matrix([[2, sqrt(2)], [sqrt(2), 3]])
A.eigenvects()
Now, instead of , we could use , where is an arbitrary diagonal matrix of type:With this, would reach a new matrix :Therefore, with this congruence, we are able to multiply the eigenvalues of by any positive number and . Since we are multiplying by two arbitrary positive numbers, we cannot change the signs of the original eigenvalues, and so the metric signature is maintained, but respecting that any value can be reached.
Note that the matrix congruence relation looks a bit like the eigendecomposition of a matrix:but note that does not have to contain eigenvalues, unlike the eigendecomposition of a matrix. This is because here is not fixed to having eigenvectors in its columns.
But because the matrix is symmetric however, we could always choose to actually diagonalize as mentioned at eigendecomposition of a real symmetric matrix. Therefore, the metric signature can be seen directly from eigenvalues.
What this does represent, is a general change of basis that maintains the matrix a symmetric matrix.
Intuition, please? Example? mathoverflow.net/questions/278641/intuition-for-symplectic-groups The key motivation seems to be related to Hamiltonian mechanics. The two arguments of the bilinear form correspond to each set of variables in Hamiltonian mechanics: the generalized positions and generalized momentums, which appear in the same number each.
Seems to be set of matrices that preserve a skew-symmetric bilinear form, which is comparable to the orthogonal group, which preserves a symmetric bilinear form. More precisely, the orthogonal group has:and its generalization the indefinite orthogonal group has:where S is symmetric. So for the symplectic group we have matrices Y such as:where A is antisymmetric. This is explained at: www.ucl.ac.uk/~ucahad0/7302_handout_13.pdf They also explain there that unlike as in the analogous orthogonal group, that definition ends up excluding determinant -1 automatically.
Therefore, just like the special orthogonal group, the symplectic group is also a subgroup of the special linear group.