Bilinear form Updated +Created
Analogous to a linear form, a bilinear form is a Bilinear map where the image is the underlying field of the vector space, e.g. .
Some definitions require both of the input spaces to be the same, e.g. , but it doesn't make much different in general.
The most important example of a bilinear form is the dot product. It is only defined if both the input spaces are the same.
Dual space Updated +Created
The dual space of a vector space , sometimes denoted , is the vector space of all linear forms over with the obvious addition and scalar multiplication operations defined.
Since a linear form is completely determined by how it acts on a basis, and since for each basis element it is specified by a scalar, at least in finite dimension, the dimension of the dual space is the same as the , and so they are isomorphic because all vector spaces of the same dimension on a given field are isomorphic, and so the dual is quite a boring concept in the context of finite dimension.
One place where duals are different from the non-duals however is when dealing with tensors, because they transform differently than vectors from the base space .
Form (mathematics) Updated +Created
Linear form Updated +Created
A Linear map where the image is the underlying field of the vector space, e.g. .
The set of all linear forms over a vector space forms another vector space called the dual space.
Matrix representation of a bilinear form Updated +Created
As usual, it is useful to think about how a bilinear form looks like in terms of vectors and matrices.
Unlike a linear form, which was a vector, because it has two inputs, the bilinear form is represented by a matrix which encodes the value for each possible pair of basis vectors.
In terms of that matrix, the form is then given by:
Multilinear form Updated +Created
See form.
Analogous to a linear form, a multilinear form is a Multilinear map where the image is the underlying field of the vector space, e.g. .