Noether's theorem Updated +Created
For every continuous symmetry in the system (Lie group), there is a corresponding conservation law.
Furthermore, given the symmetry, we can calculate the derived conservation law, and vice versa.
As mentioned at buzzard.ups.edu/courses/2017spring/projects/schumann-lie-group-ups-434-2017.pdf, what the symmetry (Lie group) acts on (obviously?!) are the Lagrangian generalized coordinates. And from that, we immediately guess that manifolds are going to be important, because the generalized variables of the Lagrangian can trivially be Non-Euclidean geometry, e.g. the pendulum lives on an infinite cylinder.
Video 1.
The most beautiful idea in physics - Noether's Theorem by Looking Glass Universe (2015)
Source. One sentence stands out: the generated quantities are called the generators of the transforms.
Video 2.
The Biggest Ideas in the Universe | 15. Gauge Theory by Sean Carroll (2020)
Source. This attempts a one hour hand wave explanation of it. It is a noble attempt and gives some key ideas, but it falls a bit short of Ciro's desires (as would anything that fit into one hour?)
Video 3.
The Symmetries of the universe by ScienceClic English (2021)
Source. youtu.be/hF_uHfSoOGA?t=144 explains intuitively why symmetry implies consevation!
Quantum superposition Updated +Created
Quantum superposition is really weird because it is fundamentally different than "either definite state but I don't know which", because the superposition state leads to different measurements than the non-superposition state.
Examples: