Most definitions tend to be bilinear forms.
We use the unqualified generally refers to the dot product of Real coordinate spaces, which is a positive definite symmetric bilinear form. Other important examples include:The rest of this section is about the case.
- the complex dot product, which is not strictly symmetric nor linear, but it is positive definite
- Minkowski inner product, sometimes called" "Minkowski dot product is not positive definite
The positive definite part of the definition likely comes in because we are so familiar with metric spaces, which requires a positive norm in the norm induced by an inner product.
The default Euclidean space definition, we use the matrix representation of a symmetric bilinear form as the identity matrix, e.g. in :so that:
Metric space vs normed vector space vs inner product space Updated 2025-05-13 +Created 1970-01-01
TODO examples:
- metric space that is not a normed vector space
- norm vs metric: a norm gives size of one element. A metric is the distance between two elements. Given a norm in a space with subtraction, we can obtain a distance function: the metric induced by a norm.
Hierarchy of topological, metric, normed and inner product spaces
. Source. Because the Minkowski inner product product is not positive definite, the norm induced by an inner product is a norm, and the space is not a metric space strictly speaking.
Metric space but where the distance between two distinct points can be zero.
Notable example: Minkowski space.