Subcase of symmetric multilinear map:
The most important example is the dot product, which is also a positive definite symmetric bilinear form.
symmetric bilinear maps that is also a bilinear form.
Like the matrix representation of a bilinear form, it is a matrix, but now the matrix has to be a symmetric matrix.
We can then immediately see that the matrix is symmetric, then so is the form. We have:But because is a scalar, we have:and:
The complex number analogue of a symmetric bilinear form.
The prototypical example of it is the complex dot product.
Note that this form is neither strictly symmetric, it satisfies:where the over bar indicates the complex conjugate, nor is it linear for complex scalar multiplication on the second argument.
Bibliography:
;
Multivariate polynomial where each term has degree 2, e.g.:is a quadratic form because each term has degree 2:but e.g.:is not because the term has degree 3.
More generally for any number of variables it can be written as:
There is a 1-to-1 relationship between quadratic forms and symmetric bilinear forms. In matrix representation, this can be written as:where contains each of the variabes of the form, e.g. for 2 variables:
Strictly speaking, the associated bilinear form would not need to be a symmetric bilinear form, at least for the real numbers or complex numbers which are commutative. E.g.:But that same matrix could also be written in symmetric form as:so why not I guess, its simpler/more restricted.
A positive definite matrix that is also a symmetric matrix.
Subcase of antisymmetric multilinear map:
Skew-symmetric bilinear map that is also a bilinear form.
Articles by others on the same topic
There are currently no matching articles.