Carrier wave Updated +Created
Early transmitters such as the spark-gap transmitter could only send noises to send Morse code.
To send voice and music, amplitude modulation had to be developed. And a key ingredient of this is the carrier wave.
The problem is, the carrier wave needs to have somewhat high frequencies, in the hundreds of kHz TODO why. But as you might imagine, that is hard to achieve by mechanical means such as a hand cranck like Hippolyte Pixiis alternator!
Interestingly, some of the first carrier wave generators were actually mechanical, e.g. the Alexanderson alternator.
But clearly such mechanical machines were not very scalable, and soon more electronic devices were introduced, notably the vacuum tube.
Modulation Updated +Created
Modulation basically means encoding data on a carrier wave.
Image that we are at a point in history where spark-gap transmitters can send Morse code.
But now people want to send voice. How to do it?
It would not be practical without modulation: Why can't you send voice without modulation?
Spark-gap transmitter Updated +Created
The first type of device that allowed sending Morse code without wires, as opposed to the wired electrical telegraph that previously existed.
Naval communications was one of the first major applications, as you can't have wires on boats!
Wireless voice transmission came about with modulation.
Video 1.
Spark-gap transmitter at the at the The Museum of Radio and Technology Jeri Ellsworth (2017)
Source.
Video 2.
Marconi Spark Gap Transmitter Demonstration by Canada Science and Technology Museum (2012)
Source.