Take the element and apply it to itself. Then again. And so on.
In the case of a finite group, you have to eventually reach the identity element again sooner or later, giving you the order of an element of a group.
The continuous analogue for the cycle of a group are the one parameter subgroups. In the continuous case, you sometimes reach identity again and to around infinitely many times (which always happens in the finite case), but sometimes you don't.
For this sub-case, we can define the Lie algebra of a Lie group as the set of all matrices such that for all :If we fix a given and vary , we obtain a subgroup of . This type of subgroup is known as a one parameter subgroup.
The immediate question is then if every element of can be reached in a unique way (i.e. is the exponential map a bijection). By looking at the matrix logarithm however we conclude that this is not the case for real matrices, but it is for complex matrices.
TODO example it can be seen that the Lie algebra is not closed matrix multiplication, even though the corresponding group is by definition. But it is closed under the Lie bracket operation.