Like everything else in Lie groups, first start with the matrix as discussed at Section "Lie algebra of a matrix Lie group".

Intuitively, a Lie algebra is a simpler object than a Lie group. Without any extra structure, groups can be very complicated non-linear objects. But a Lie algebra is just an algebra over a field, and one with a restricted bilinear map called the Lie bracket, that has to also be alternating and satisfy the Jacobi identity.

Another important way to think about Lie algebras, is as infinitesimal generators.

Because of the Lie group-Lie algebra correspondence, we know that there is almost a bijection between each Lie group and the corresponding Lie algebra. So it makes sense to try and study the algebra instead of the group itself whenever possible, to try and get insight and proofs in that simpler framework. This is the key reason why people study Lie algebras. One is philosophically reminded of how normal subgroups are a simpler representation of group homomorphisms.

To make things even simpler, because all vector spaces of the same dimension on a given field are isomorphic, the only things we need to specify a Lie group through a Lie algebra are:Note that the Lie bracket can look different under different basis of the Lie algebra however. This is shown for example at Physics from Symmetry by Jakob Schwichtenberg (2015) page 71 for the Lorentz group.

- the dimension
- the Lie bracket

As mentioned at Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 4 "Lie Algebras", taking the Lie algebra around the identity is mostly a convention, we could treat any other point, and things are more or less equivalent.

Bibliography:

Elements of a Lie algebra can (should!) be seen a continuous analogue to the generating set of a group in finite groups.

For continuous groups however, we can't have a finite generating set in the strict sense, as a finite set won't ever cover every possible point.

But the generator of a Lie algebra can be finite.

And just like in finite groups, where you can specify the full group by specifying only the relationships between generating elements, in the Lie algebra you can almost specify the full group by specifying the relationships between the elements of a generator of the Lie algebra.

This "specification of a relation" is done by defining the Lie bracket.

The reason why the algebra works out well for continuous stuff is that by definition an algebra over a field is a vector space with some extra structure, and we know very well how to make infinitesimal elements in a vector space: just multiply its vectors by a constant $c$ that cana be arbitrarily small.

The Baker-Campbell-Hausdorff formula basically defines how to map an algebra to the group.

Bibliography:

- Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 7 "EXPonentiation"

Lie Groups, Physics, and Geometry by Robert Gilmore (2008) 7.2 "The covering problem" gives some amazing intuition on the subject as usual.

Example at: Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 7 "EXPonentiation".

Example at: Lie Groups, Physics, and Geometry by Robert Gilmore (2008) Chapter 7 "EXPonentiation".

Furthermore, the non-compact part is always isomorphic to $R_{n}$, only the non-compact part can have more interesting structure.

The most important example is perhaps $SO(3)$ and $SU(2)$, both of which have the same Lie algebra, but are not isomorphic.

This simply connected is called the universal covering group.

The unique group referred to at: every Lie algebra has a unique single corresponding simply connected Lie group.

Most commonly refers to: exponential map.

Like everything else in Lie group theory, you should first look at the matrix version of this operation: the matrix exponential.

The exponential map links small transformations around the origin (infinitely small) back to larger finite transformations, and small transformations around the origin are something we can deal with a Lie algebra, so this map links the two worlds.

The idea is that we can decompose a finite transformation into infinitely arbitrarily small around the origin, and proceed just like the product definition of the exponential function.

The definition of the exponential map is simply the same as that of the regular exponential function as given at Taylor expansion definition of the exponential function, except that the argument $x$ can now be an operator instead of just a number.

If we consider just real number, $Z=X+Y$, but when X and Y are non-commutative, things are not so simple.

Furthermore, TODO confirm it is possible that a solution does not exist at all if $X$ and $Y$ aren't sufficiently small.

This formula is likely the basis for the Lie group-Lie algebra correspondence. With it, we express the actual group operation in terms of the Lie algebra operations.

Notably, remember that a algebra over a field is just a vector space with one extra product operation defined.

Vector spaces are simple because all vector spaces of the same dimension on a given field are isomorphic, so besides the dimension, once we define a Lie bracket, we also define the corresponding Lie group.

Since a group is basically defined by what the group operation does to two arbitrary elements, once we have that defined via the Baker-Campbell-Hausdorff formula, we are basically done defining the group in terms of the algebra.

Cardinality $≤$ dimension of the vector space.