Plane wave function Updated +Created
In this solution of the Schrödinger equation, by the uncertainty principle, position is completely unknown (the particle could be anywhere in space), and momentum (and therefore, energy) is perfectly known.
The plane wave function appears for example in the solution of the Schrödinger equation for a free one dimensional particle. This makes sense, because when solving with the time-independent Schrödinger equation, we do separation of variable on fixed energy levels explicitly, and the plane wave solutions are exactly fixed energy level ones.
Schrödinger equation for a free one dimensional particle Updated +Created
Then, for each energy , from the discussion at Section "Solving the Schrodinger equation with the time-independent Schrödinger equation", the solution is:
Therefore, we see that the solution is made up of infinitely many plane wave functions.
The Schrödinger equation is not relativistic Updated +Created
Video 1.
Why Relativity Breaks the Schrodinger Equation by Richard Behiel (2023)
Source. Take a plane wave function, because we know its momentum perfectly. Apply a constant voltage to an electron. You can easily bring it beyond the speed of light at about 255.5 keV.