Bicomplex numbers are an extension of complex numbers that incorporate two imaginary units, typically denoted as \( i \) and \( j \), where \( i^2 = -1 \) and \( j^2 = -1 \). This leads to the algebraic structure of bicomplex numbers being defined as: \[ z = a + bi + cj + dij \] where \( a, b, c, \) and \( d \) are real numbers.
Articles by others on the same topic
There are currently no matching articles.