The Broer-Kaup equations are a system of partial differential equations that describe long wave interactions in shallow water waves, particularly focusing on the evolution of small amplitude waves in a two-dimensional medium. These equations arise in the context of studying wave phenomena in various physical systems, including fluid dynamics and nonlinear wave interactions. The Broer-Kaup system can be derived from the incompressible Euler equations under certain approximations and is characterized by its ability to model the evolution of wave packets and their interactions over time.
Articles by others on the same topic
There are currently no matching articles.