The Carathéodory conjecture is a mathematical conjecture in the field of geometry that deals with the concept of convex polygons in three-dimensional space. Specifically, the conjecture states that for any simple closed convex surface in three-dimensional Euclidean space, the surface can be covered by at most five planes. This conjecture was proposed by the Greek mathematician Constantin Carathéodory in 1911.
Articles by others on the same topic
There are currently no matching articles.