A function \( f: A \rightarrow B \) (where \( A \) and \( B \) are subsets of metric spaces) is said to be **Cauchy-continuous** at a point \( x_0 \in A \) if for every sequence of points \( (x_n) \) in \( A \) that converges to \( x_0 \) (meaning that \( x_n \to x_0 \) as \( n \) approaches infinity
Articles by others on the same topic
There are currently no matching articles.