In group theory, a branch of abstract algebra, a **central subgroup** refers to a subgroup that is contained in the center of a given group. The center of a group \( G \), denoted \( Z(G) \), is defined as the set of all elements \( z \in G \) such that \( zg = gz \) for all \( g \in G \). In other words, the center consists of all elements that commute with every other element in the group.

Articles by others on the same topic (0)

There are currently no matching articles.