Conley index theory is a branch of dynamical systems and topology that provides a way to study the qualitative behavior of dynamical systems using algebraic topology. Developed primarily by Charles Conley in the 1970s, the Conley index helps to identify invariant sets and study their dynamics in a systematic way. The key concepts in Conley index theory include: 1. **Isolated Invariant Sets**: The theory focuses on isolated invariant sets in dynamical systems.
Articles by others on the same topic
There are currently no matching articles.