In differential geometry, a connection on a fibred manifold is a mathematical structure that allows one to compare and analyze the tangent spaces of the fibers of the manifold, where each fiber can be thought of as a submanifold of the total manifold. Connections are critical for defining concepts such as parallel transport, curvature, and differentiation of sections of vector bundles.

Articles by others on the same topic (0)

There are currently no matching articles.