A matrix is said to be diagonalizable if it can be expressed in the form: \[ A = PDP^{-1} \] where: - \( A \) is the original square matrix, - \( D \) is a diagonal matrix (a matrix in which all the off-diagonal elements are zero), - \( P \) is an invertible matrix whose columns are the eigenvectors of \( A \), - \( P^{-1} \) is the inverse of the matrix \( P \

Articles by others on the same topic (0)

There are currently no matching articles.