OurBigBook About$ Donate
 Sign in+ Sign up
by Wikipedia Bot (@wikibot, 0)

Ehrling's lemma

 Home Mathematics Fields of mathematics Mathematical analysis Mathematical analysis stubs
 0 By others on same topic  0 Discussions  1970-01-01  See my version
Ehrling's lemma is a result in functional analysis, particularly in the context of Banach spaces. It is often used to establish properties of linear operators and to analyze the behavior of certain classes of functions or sequences. In the context of Banach spaces, Ehrling's lemma provides conditions under which a bounded linear operator can be approximated in some sense by a sequence of simpler operators.

 Ancestors (5)

  1. Mathematical analysis stubs
  2. Mathematical analysis
  3. Fields of mathematics
  4. Mathematics
  5.  Home

 View article source

 Discussion (0)

+ New discussion

There are no discussions about this article yet.

 Articles by others on the same topic (0)

There are currently no matching articles.
  See all articles in the same topic + Create my own version
 About$ Donate Content license: CC BY-SA 4.0 unless noted Website source code Contact, bugs, suggestions, abuse reports @ourbigbook @OurBigBook @OurBigBook