In category theory, equivalence of categories is a fundamental concept that captures the idea of two categories being "essentially the same" in a categorical sense. Two categories \( \mathcal{C} \) and \( \mathcal{D} \) are said to be equivalent if there exists a pair of functors between them that reflect a correspondence of their structural features, without necessarily being isomorphic.
Articles by others on the same topic
There are currently no matching articles.