The exterior covariant derivative is a concept that arises in differential geometry, particularly in the context of differential forms on a manifold. It generalizes the idea of a standard exterior derivative, which is a way to differentiate differential forms, by incorporating the notion of a connection (or a covariant derivative) to account for possible curvature in the underlying manifold. ### Key Concepts: 1. **Differential Forms**: - Differential forms are objects in a manifold that can be integrated over submanifolds.
Articles by others on the same topic
There are currently no matching articles.