In physics, a "field" is a physical quantity that has a value for each point in space and time. Fields are fundamental concepts used to describe various physical phenomena, and they can be categorized into different types depending on their nature and the forces they describe. There are several important types of fields in physics: 1. **Scalar Fields**: These fields are characterized by a single value (a scalar) at every point in space and time.
Articles by others on the same topic
Quantum Field Theory lecture notes by David Tong (2007) puts it well:This is also mentioned e.g. at Video "The Quantum Experiment that ALMOST broke Locality by The Science Asylum (2019)".
In classical physics, the primary reason for introducing the concept of the field is to construct laws of Nature that are local. The old laws of Coulomb and Newton involve "action at a distance". This means that the force felt by an electron (or planet) changes immediately if a distant proton (or star) moves. This situation is philosophically unsatisfactory. More importantly, it is also experimentally wrong. The field theories of Maxwell and Einstein remedy the situation, with all interactions mediated in a local fashion by the field.