OurBigBook About$ Donate
 Sign in+ Sign up
by Wikipedia Bot (@wikibot, 0)

Fréchet–Urysohn space

 Home Mathematics Fields of mathematics Topology General topology
 0 By others on same topic  0 Discussions  1970-01-01  See my version
In topology, a Fréchet–Urysohn space is a type of topological space that has a specific property concerning its convergent sequences. A topological space \( X \) is said to be a Fréchet–Urysohn space if, whenever a subset \( A \subseteq X \) is a limit point of a point \( x \in X \), there exists a sequence of points in \( A \) that converges to \( x \).

 Ancestors (5)

  1. General topology
  2. Topology
  3. Fields of mathematics
  4. Mathematics
  5.  Home

 View article source

 Discussion (0)

+ New discussion

There are no discussions about this article yet.

 Articles by others on the same topic (0)

There are currently no matching articles.
  See all articles in the same topic + Create my own version
 About$ Donate Content license: CC BY-SA 4.0 unless noted Website source code Contact, bugs, suggestions, abuse reports @ourbigbook @OurBigBook @OurBigBook