The Fulkerson–Chen–Anstee theorem is a result in graph theory, particularly related to the field of perfect graphs. The theorem establishes that certain properties hold for certain types of graphs, specifically focusing on the behavior of graph complements and their chromatic numbers. The theorem is often framed in the context of *perfect graphs*, which are defined as graphs where the chromatic number of the graph equals the size of the largest clique in the graph for every induced subgraph.

Articles by others on the same topic (0)

There are currently no matching articles.