A glossary of commutative algebra is a collection of terms and definitions that are commonly used in the field of commutative algebra, which is a branch of mathematics that studies commutative rings, their ideals, and modules over those rings. Here are some key terms and concepts typically found in such a glossary: 1. **Ring**: A set equipped with two binary operations (addition and multiplication) that satisfy certain properties (associativity, distributivity, etc.).
Articles by others on the same topic
There are currently no matching articles.